翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

interpolation inequality : ウィキペディア英語版
interpolation inequality
In the field of mathematical analysis, an interpolation inequality is an inequality of the form
:
\| u_ \|_ \leq C \| u_ \|_^ \|_^ \|_^^} | u(x) |^ \, \mathrm x \leq 2 \int_} | u(x) |^ \, \mathrm x \int_} | \nabla u(x) |^ \, \mathrm x,

i.e.
:
\| u \|_ \, \| u \|_ \, \| \nabla u \|_.

(Since Ladyzhenskaya's inequality considers compactly supported functions ''u'', Friedrichs' inequality implies that the ''L''2 norm of ∇''u'' is equivalent to the ''H''1 Sobolev norm of ''u'', and so Ladyzhenskaya's inequality really does only treat a single function ''u'', not distinct functions ''u''0 = ''u''1 = ''u'' and ''u''2 = ∇''u''.)
Another simple example of an interpolation inequality — one in which the ''u''''k'' and the norms ‖·‖''k'' are different — is Young's inequality for the convolution of two functions ''f'', ''g'': ℝ''d'' → ℝ:
:\|f \star g\|_} \|g\|_+\frac=1+\frac.
==Examples of interpolation inequalities==

* Agmon's inequality
* Gagliardo–Nirenberg interpolation inequality
* Ladyzhenskaya's inequality
* Landau–Kolmogorov inequality
* Marcinkiewicz interpolation theorem
* Nash's inequality
* Riesz–Thorin theorem
* Young's inequality for convolutions

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「interpolation inequality」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.